Skip to main content
WorldCist'20 - 8th World Conference on Information Systems and Technologies

Full Program »

Analyzing Peer-to-Peer Lending Secondary Market: What Determines the Successful Trade of a Loan Note?

Predicting loan default in peer-to-peer (P2P) lending has been a widely researched topic in recent years. While one can identify a large number of contributions predicting loan default on primary market of P2P platforms, there is a lack of research regarding the assessment of analytical methods on secondary market transactions. Reselling investments in the secondary market offers a valuable alternative to investors in P2P market to increase their profit and diversification. In this article, for the first time in the literature, we apply advanced machine learning algorithms to build classification models that can predict the success of secondary market offers. Using data from a leading European P2P platform Bondora, we found that random forests offer the best classification performance. Additionally, the empirical analysis reveals that in particular two variables have significant impact on success in the secondary market: (i) discount rate and (ii) the number of days the loan had been in debt when it was put on the secondary market.

Ajay Byanjankar
Åbo Akademi University
Finland

Jozsef Mezei
Åbo Akademi University
Finland

Xiaolu Wang
Åbo Akademi University
Finland

 


Powered by OpenConf®
Copyright ©2002-2018 Zakon Group LLC